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Abstract—Urban traffic data consists of observations like
number and speed of cars or other vehicles at certain locations as
measured by deployed sensors. These numbers can be interpreted
as traffic flow which in turn relates to the capacity of streets and
the demand of the traffic system. City planners are interested
in studying the impact of various conditions on the traffic flow,
leading to unusual patterns, i.e., outliers. Existing approaches
to outlier detection in urban traffic data take into account only
individual flow values (i.e., an individual observation). This can
be interesting for real time detection of sudden changes. Here,
we face a different scenario: The city planners want to learn
from historical data, how special circumstances (e.g., events or
festivals) relate to unusual patterns in the traffic flow, in order to
support improved planing of both, events and the layout of the
traffic system. Therefore, we propose to consider the sequence
of traffic flow values observed within some time interval. Such
flow sequences can be modeled as probability distributions of
flows. We adapt an established outlier detection method, the local
outlier factor (LOF), to handling flow distributions rather than
individual observations. We apply the outlier detection online
to extend the database with new flow distributions that are
considered inliers. For the validation we consider a special case
of our framework for comparison with state-of-the-art outlier
detection on flows. In addition, a real case study on urban traffic
flow data showcases that our method finds meaningful outliers
in the traffic flow data.

I. INTRODUCTION

In the analysis of urban traffic we aim to learn from the
behavior of independent participants (cyclists, cars, trucks,
and public transportation) under different conditions (weather,
events, maintenance of streets) to support decisions of city
planners and managers on the layout of streets, regulation
systems (e.g., traffic lights), and routes for public transport, or
temporarily invasive decisions in planning construction sites.
An important basis for the description of the complex traffic
system is the estimation of the traffic flow, based on counting
the number of objects (e.g., pedestrians, bicycles, cars, trucks,
buses) that cross a given location during some time interval
by means of various types of sensors in streets, in traffic light
systems, or as mobile sensors. The flow, i.e., the number of
objects passing a specific location within a specified timeframe
(or a “window” over the time axis) varies over the day and
between different days of the week. For the city planners it
is important to understand the impact of events, particular
weather conditions, or planning decisions on the traffic flow in
the city. In this study, we therefore consider outlier detection
on traffic flow data and the relation of outliers to special
circumstances.

The detection of anomalies (outliers) in the traffic flow
by the application of adapted outlier detection techniques is
one of the main applications in the analysis of urban traffic
data. An outlier can be defined as “an observation (or a set
of observations) which appears to be inconsistent with the
remainder of that set of data” [2]. Outlier detection has been
studied intensely in the two last decades in an abstract setting
[5], [13], [17], [23] as well as in application scenarios such
as spatial data [9], [19]. Also many algorithms have been
developed to identify outliers in traffic flow [4], [12], [14],
[20], [22]. However, these algorithms detect only single flow
outliers and ignore the correlation between the flow values.

In this paper, we propose a different approach, as the interest
in collaboration with the city of Odense, Denmark, is foremost
not on real-time detection of outliers (unusual flow values in
short time frames) but on the impact of certain events on the
traffic flow over a longer time frame (e.g., a few hours, a day).
We therefore resort to capturing the flow distribution over a
longer time frame. The distribution of flows is defined by the
set of flows (e.g., cars per minute per location) captured during
a specific time period (e.g., rush hour on Mondays), which
immediately relates to a probability distribution of flows (or
flow probability distribution, FPD).

In this paper, we propose a framework for outlier detection
in flow distributions. To the best of our knowledge, we are the
first to deal with flow distributions. The main contributions
of the paper are summarized as follows: (1) We show that
sets of flows can be interpreted as probability distributions of
flows. (2) We propose a framework that updates the historical
data for dealing with flow probability distribution outliers
from the distribution of flows. (3) We propose a strategy
of constructing the database of historical flow probability
distributions, by taking into account the temporal information
of the flow distributions. (4) We propose an adaptation FPD-
LOF of the local outlier factor (LOF) algorithm [5] by adapting
the Bhattacharyya similarity measure [3] for detecting flow
probability distribution outliers. (5) We apply FPD-LOF to a
special case to allow for comparison with existing approaches.
Experimental analysis shows that FPD-LOF outperforms the
state-of-the-art flow outlier detection algorithms. In addition,
a case study on real urban traffic flow data demonstrates the
practical usefulness of the proposed framework. The results
reveal that FPD-LOF using Bhattacharyya metric identifies
meaningful outliers relating to unusual weather conditions or
special events in the city.



In the remainder, we survey existing outlier techniques for
traffic data (Section II), we present the overall framework and
the adaptation FPD-LOF for outlier detection in flow proba-
bility distributions (Section III), we perform an experimental
analysis of the framework and method on synthetic data as
well as a case study on real data (Section IV), and conclude the
paper with a perspective on potential future work (Section V).

II. RELATED WORK

Several surveys on outlier detection algorithms for traffic
flow data have been published [10], [11], [15]. We refer to
our recent overview [8] and sketch here only the methods that
we use in the experiments as competitors.

Ngan et al. [16] used a DPMM (Dirichlet Process Mixture
Model) for deriving outliers in urban traffic flow data. First,
the set of all flow values F = {f1, f2, . . . , f|F |} is projected
into an n-dimensional space, where the ith object is defined
by the flow values {fi, . . . , fi+n−1}. The obtained dimensions
are then reduced by PCA (Principal Component Analysis)
to a two-dimensional space. Then, the Chinese restaurant
process [1] is performed to cluster the flow values with an
infinite number of clusters. Each flow value is assigned to a
new cluster with a probability proportional to a concentration
parameter α, otherwise, it is assigned to the previously created
cluster. Afterwards, all flow values belonging to the cluster
having a maximum number of elements are considered inliers,
the remaining flow values are deemed outliers.

Ye et al. [22] present an anomaly-tolerant traffic matrix esti-
mation approach called SETMADA (Simultaneously Estimate
Traffic Matrix and Detect Anomaly). It estimates the traffic
matrix and uses it for anomaly detection. Based on the prior
low-rank property and temporal characteristic of the traffic
flow, the outlier detection is formulated as a prior information-
guided matrix completion problem.

Dang et al. [7] proposed a combination between kNN [17]
and PCA for outlier flow detection. A dimensionality reduction
is performed by PCA. In the derived subspaces the kNN outlier
detection [17] is applied.

Tan et al. [21] proposed a density-based bounded application
of LOF for large scale traffic flow data in Hong Kong. A
three dimensional space is derived by PCA, then the LOF
algorithm [5] is applied on this reduced space to find local
outliers in the flow data.

III. OUTLIER FLOW PROBABILITY DISTRIBUTION
DETECTION

A. Problem statement

In this paper, we focus on detecting anomalous flow prob-
ability distributions. A traffic flow is defined as the number
of vehicles passing through a location (a point in the road
network) during a given time interval. A flow probability
distribution (FPD) links flow values to their likelihood of
occurrence during a given period of time. We estimate traffic
flow probability distributions on the basis of their empirical
counterparts based on real-life measurements.

Let I be the set of time instants at regular time intervals
at which we collect flow measurements at a specific location
and let X = [x1, ..., x|I|] be the list of corresponding flow
values. Let λ be the duration of the time interval between
two consecutive measurement instants and δ the duration
considered by each flow measurement x ∈ X . We will assume
λ = δ.

From I we can extract a collection T = {T1, . . . , Tτ} of
non-intersecting subsets of µ consecutive time instants. For a
subset Tj , j = 1, . . . , τ , we identify the time instant where
the subset begins by ι(Tj), that is, Tj = {ι(Tj), ι(Tj) +
1, . . . , ι(Tj)+µ}. To each Tj , j = 1, . . . , τ , there is associated
a set of flow measurements XTj . Thus, for example, we can
create the collection of sets XTj , j = 1 . . . 7 each containing
the flow measurements between 7:00 and 10:00 on the seven
different days of a week.

The flow measurements in each set XTj , j = 1, . . . , τ , can
be represented as discrete random variables Yj ∈ N0 to capture
the uncertainty related to those measurements. Consequently,
each Yj can be described by its probability mass function fYj :
N0 → [0, 1] defined as fYj (y) = Pr(Yj = y), y ∈ N0.
To estimate fYj = fj , we use the empirical probability
distribution f̂j of the flow given by the relative frequency of
the measurements contained in XTj , that is:

f̂j(y) =
|{x = y | x ∈ XTj}|

|XTj |
, y ∈ N0, j = 1, . . . , τ.

We name such an estimated probability distribution of flow
values a flow probability distribution (FPD). Outliers in a set
of FPDs could be defined by some outlier scoring function
and some threshold as follows:

Definition 1 (FPD Outliers): Given a family of empirical
FPDs F = {f̂1, f̂2, . . . , f̂τ} derived from a collection of flow
measurements {XT1 , . . . , XTτ }, a scoring function s : F → R
that assigns outlier scores to some FPD, and some threshold
θ; FPD outliers are the members of the set O ⊆ F , such that:

O = {f̂j ∈ F | s(f̂j) ≥ θ}.

B. Outlier detection in a growing database of traffic flow data

In the application scenario with our partners in the muni-
cipality, observations of the traffic flow are collected continu-
ously over time.

There are specific questions of interest that can be answered
based on the aggregation of flows over pre-specified time-
intervals (e.g., rush hour during weekdays, afternoon and
evening during weekends and holidays) to study the impact of
interferences with the normal traffic behavior (e.g., closing of
routes for construction during the rush hour, impact of special
events such as sport events or festivals during weekends and
holidays). Detected outliers can be verified and excluded from
the database of normal traffic behavior.

Our infrastructure for the detection of outliers consists of:

1) Construction and update of a database of historical
FPDs:



a) extraction of information from raw traffic flow data
received from sensors,

b) synthesizing data for pre-specified time intervals
via empirical FPD.

2) (Online) detection of outlier FPDs: The historical FPDs
are used as a reference set for each new FPD in order
to detect outliers.
• If the new flow distribution is not an outlier, it is

added to the historical data.
• If it is suspected to be an outlier, it is not added to

the historical reference database.
The first component follows the definitions in Section III-A.

To carry out the second task we adapt LOF [5], as we discuss
in the following.

C. Adaptation of LOF for FPD outlier detection

We base the outlier procedure applied in our framework
on the classic method LOF (Local Outlier Factor) [5]. Other
methods could be adapted in a similar way. We chose LOF as
it is well-known and it has been shown to be still state-of-the-
art [6] and suitable for generalizations to different data types
and scenarios [19].

1) Similarity measure for FPDs: For the representation of
an empirical FPD f̂ : XT → [0, 1] we use a vector A of
length d = max{XT } to represent f̂ . A contains the estimated
probability density values of all possible flow values up to d:

A[m] = f̂(m) ∀m ∈ [0, d}]. (1)

To compare two FPDs with vector representation of differ-
ent size, we project the lower size vector to the greater size
one as follows.

Definition 2 (Vector projection): Let Ai and Aj be vector
representations of two FPDs f̂i and f̂j . Without loss of gen-
erality, let di ≥ dj . Aj is projected to a di-size representation
by setting all the missing values of Aj to 0, i.e.,

Aj(m) =

{
Aj(m) if m ∈ [0, dj ]
0 if m ∈ [dj + 1, di]

Many distance measures for computing the similarity be-
tween two probability distributions exist in the literature such
as the Euclidean distance, the Jaccard similarity, the Kullback-
Leibler-divergence, and the Bhattacharyya distance [3]. Here
we choose the Bhattacharyya distance.

The Bhattacharyya distance B(Ai,Aj) expressing the simi-
larity between two FPDs represented by Ai and Aj is defined
as follows:

B(Ai,Aj) = − ln

di∑
m=1

dj∑
k=1

√
(|m− k|) + (Ai(m)Aj(k))

(2)
2) Local outlier factor for FPDs: Let F = {f̂1, f̂2, . . . , f̂τ}

be a family of FPDs, f̂ a new FPD not in F , and k < τ a
parameter for the size of the set kNN(f̂) ⊆ F consisting of
the k FPDs from F that are most similar to f̂ . We denote by
kNN-dist(f̂i) the distance between some FPD f̂i and the kth

most similar FPD.

In LOF, the kNN-dist is the most fundamental ingredient
for density estimates. Outliers are objects with a relatively low
local density as compared to their k nearest neighbors. These
density estimates typically relate to Euclidean space. However,
the general LOF pattern has been extended to many other,
non-Euclidean applications as well [19]. In our adaptation we
have the equivalent in Bhattacharyya space. The components
to derive the local outlier factor (LOF) are [5] the local
reachability density (lrd) and the local outlier factor (LOF)
based on the lrds:

The local reachability density (lrd) is defined as follows:

lrd(f̂) := 1

/∑
f̂i∈kNN(f̂) reachk(f̂ , f̂i)

|kNN(f̂)|
(3)

where reachk is the so called reachability distance, given by:

reachk(p, o) := max{kNN-dist(o), dist(p, o)}. (4)

The function dist designates the basic distance measure used
in the data space. In standard applications, often the Euclidean
distance is used. Here we use the Bhattacharyya distance
(Eq. 2) for measuring the distance between two FPDs.

Local reachability densities (lrds) are local density models
for each FPD. The local outlier factor (LOF) [5] is the average
ratio between the lrds of the FPDs in kNN(f̂) and lrd(f̂):

LOF (f̂) :=
1

|kNN(f̂)|

∑
f̂i∈kNN(f̂)

lrd(f̂i)

lrd(f̂)
(5)

The intuition is that those FPDs are deemed unusual that
have on average a larger Bhattacharyya distance to the k
most similar other FPDs than those k most similar FPDs in
turn have to their k most similar FPDs. Thus, LOF (f̂) > 1
signals outlierness of f̂ . We use therefore 1 as a conservative
cut-off threshold, i.e., if LOF (f̂new ) ≤ 1, then f̂new will
be considered an inlier and can be added to the database of
historical records.

IV. EXPERIMENTAL EVALUATION

A number of experiments have been carried out to demon-
strate the performance of the proposed framework using both
synthetic data and real urban traffic flow data.1 The evaluation
is performed using F-measure and the area under the curve
of the receiver operating characteristic (ROC AUC), common
measures for the evaluation of outlier detection methods [6].

A. Time Series Datasets

In a first experiment, we compare FPD-LOF to the recent
use of LOF for detecting outliers in time series (BLOF [21]).
We use three real-world time series datasets.2 The datasets are
described in [18] and collected from various domains.

1) EnronInc This dataset comprises four years
(1999–2002) of Enron email communications. The
Enron email network contains a total of 80.884

1Source code and data are available at: http://dss.sdu.dk/projects/its.html.
2http://odds.cs.stonybrook.edu/



points. The ground truth identifies the major events
in the company’s history, such as revenue losses and
restatements of earnings.

2) RealityMining This dataset contains the communication
flow data at MIT university recorded continuously via
preinstalled software on their mobile devices over 50
weeks. The sequences of weekly temporal flows are built
for three types of relations, voice calls, short messages,
and bluetooth scans. The ground truth captures semester
breaks, exam weeks, and holidays.

3) TwitterWorldCup This collection contains data related
to the World Cup 2014, June 12 to July 13. The
tweets are filtered by popular or official World Cup
hashtags, such as #worldcup, #fifa, #brazil, etc. The
ground truth contains the goals, penalties, and injuries
in all the matches that involve at least one of the
following renowned teams (Brazil, Germany, Argentina,
Netherlands, Spain, and France).

While BLOF works on the time series as such, FPD-LOF
works on the distributional representation of the time series.
Figures 1(a), 1(b), and 1(c) present the ROC AUC value on the
three time series datasets (EnronInc, RealityMining, and Twit-
terWorldCup) of FPD-LOF and BLOF. By varying the size
of the neighborhood from 10 to 100, FPD-LOF outperforms
BLOF in all settings. In addition, the difference between both
algorithms increases for RealityMining and TwitterWorldCup
datasets. This can be explained by the fact that the FPD-LOF
algorithm uses sequence flow values by taking into account
the correlation between the flows as opposed to BLOF where
individual flow values are used to determine outliers. This
result confirms that using a distributional representation can
be superior to the classic time series approach.

B. Real Data
From our collaboration with the city of Odense we have

data from several test locations throughout the city area. Each
data entry contains information related to the vehicle detected
at specific locations such as: gap, length, date, time, speed,
and class (i.e., type of vehicle). For ten locations, sensor
infrastructure has been installed in a pilot experiment. The ten
locations have different characteristics (traffic density, counters
for cars or for bikes) as described in Table I. The traffic data
were obtained between January 1st , 2017 and September 30th ,
2017.

C. Quantitative Analysis
A common problem in the evaluation of outlier detection

techniques using new data is that outliers are not labeled. To
facilitate a quantitative evaluation on the real data, we inject in
F = {f̂1, f̂2, . . . , f̂τ} with d∗ = max{dj | j = 1..τ} synthetic
outliers fi in different variants:

1) Null FPD: In the null FPD, the flow distribution is equal
to 0 for any positive flow. In other words, the street is
always empty during the observation (see Figure 2(a)).
Formally, a null FPD is defined as:

fi(m) = 0, m = 1 . . . d∗ (6)
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Fig. 1. ROC AUC of FPD-LOF and BLOF for time series data sets.

TABLE I
DATA DESCRIPTION

Address ID Type #(Cars or Bikes)
Falen L1 Cars 16.932
Anderupvej L2 Cars 25.310
Åløkke Alle L3 Cars 238.775
Thomas B Thriges Gade A Syd L4 Bikes 46.978
Niels Bohrs Alle L5 Bikes 445.883
Rødegårdsvej Østgående L6 Bikes 575.089
Rugårdsvej L7 Cars 2.318.852
Nyborgvej L8 Cars 2.352.930
Grønlandsgade L9 Cars 2.955.464
Odins Bro L10 Cars 3.921.746



0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(#flow/t)

pr
ob
ab
ili
ty

(a) Null FPD

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(#flow/t)

pr
ob
ab
ili
ty

(b) Stable FPD

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

(#flow/t)

pr
ob
ab
ili
ty

(c) Regular FPD

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(#flow/t)

pr
ob
ai
lit
y

(d) Unexpected FPD

Fig. 2. Simulated unusual FPDs (schematic examples).

2) Stable FPD: In the stable FPD, the flow distribution is
equal to 1 for flow equal to x, 0 otherwise. In other
words, the flow is always the same, x (see Figure 2(b)).
Formally:

fi(m) =

{
1 if m = x
0 otherwise , m = 1 . . . di (7)

3) Regular FPD: The flow here is equally distributed, i.e.,
all flow values are equally likely to occur (Figure 2(c)):

fi(m) =
1

di
, m = 1 . . . d∗ (8)

4) Unexpected FPD: These FPDs mock the behavior ob-
served when an unusual event occurs with a strong
impact on the traffic flow (e.g., festivals or accidents
that cause some road closings). We have three stages
(Figure 2(d)): a stable flow from 1 to x, a cumulated
flow from x to y, and a null flow from y to di:

fi(m) =

 ε if 1 ≤ m ≤ x
Ψ(m) if x < m ≤ y
0 if y < m ≤ d∗

, m = 1 . . . d∗

(9)
Here Ψ(m) is some function [x...y]→ [ε...(1−xε)] with
the following properties:

∀(m1,m2),m1 ≤ m2 ⇐⇒ Ψ(m1) ≤ Ψ(m2) (10)∑
mΨ(m) = (1− xε) (11)

5) Noise FPD: Noise FPDs are generated by adding Gaus-
sian noise of variance σi with a certain probability
p ∼ U(0, 1) and a threshold γi:

fi =

{
fi + n ∼ N (0, σ2

i ) if p ≥ γi
fi otherwise (12)

We compare our FDP-LOF against three competitors: the
work of Dang et al. [7], SETMADA [22], and the work of
Ngan et al. [16] (see Section II).
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Fig. 4. ROC AUC of FPD-LOF and state-of-the-art outlier flow detection
algorithms

In a first comparison, we evaluate the impact of the neigh-
borhood size head-to-head with the work of Dang et al. [7] that
uses the kNN approach with Euclidean distance for detecting
outliers.

Figure 3 presents the F-measure of our FPD-LOF and Dang
et al. [7] procedure with different size of the neighborhood on
10 000 observations sampled from location L1 and 10% in-
jected outliers randomly selected from the five types. For both
algorithms, the quality increases with a larger neighborhood
on this dataset. In all cases, FPD-LOF outperforms Dang et
al. [7].

When we fix the neighborhood size to 100, we can compare
all three competitors on the basis of the given data. Figure 4
presents the ROC AUC value achieved by the methods over
varying database size (amount of historical data used). More
data is helpful for all methods, but FPD-LOF benefits more.
Anyway, in all cases FPD-LOF is superior to the competing
approaches that do not take a distributional representation into
account.

D. Qualitative Analysis (Case Study)

Tables II shows the top three outliers for each location
along with an interpretation by connecting the dates to weather
information or the event calendar of the city. Some outliers can
be related to the weather information, others can be related to
the city events.

We can remark from this table, that some flow distribution
outliers can be justified by the weather information (very



TABLE II
THE TOP FPD-LOF OUTLIERS AT THE TEN LOCATIONS

Location Date Interpretation
04-04-2017 children sport event

L1 26-03-2017 very windy
28-02-2017 very windy
04-04-2017 children sport event

L2 01-01-2017 new year holiday
15-03-2017 very rainy
10-09-2017 very rainy

L3 09-09-2017 very windy
03-09-2017 very windy
09-02-2017 farmer’s market

L4 08-02-2017 farmer’s market
23-06-2017 very windy
10-03-2017 very windy

L5 08-02-2017 farmer’s market
09-02-2017 farmer’s market
08-03-2017 women’s day

L6 23-02-2017 national sport event
14-02-2017 saint valentine’s day
03-05-2017 very windy

L7 26-06-2017 very windy
14-02-2017 saint valentine’s day
23-02-2017 national sport event

L8 01-01-2017 new year holiday
08-03-2017 women’s day
23-01-2017 very cold

L9 08-03-2017 women’s day
19-05-2017 very windy
23-02-2017 national sport event

L10 01-01-2017 new year holiday
12-07-2017 very windy

windy, very rainy, and very cold) of that day. For instance,
the FPD of the day 28-02-2017 is an outlier because the
weather was so windy that a substantial increase was observed
in people that took cars and buses instead of bikes. Other
flow outliers can be related to major events. For instance,
the first day of the year (01-01-2017) has strong impact in
three locations, also the celebration of the women’s day (08-
03-2017) shows up as an outlier in three locations. We can
justify the first case by the fact that people tend to stay at
home and take some reset after a celebration at the last night
of 2016. However, we can justify the second case by the fact
that women celebrate their day in public places (restaurant,
cinemas, theaters, and so on).

These findings show that a traffic flow probability distribu-
tion can be unusual in different ways, be it higher or lower
flow values than usual being dominant. Using a distributional
representation of the flow values supports detecting such
different manifestations of outlierness apparently in a better
way than the traditional approaches.

V. CONCLUSION

We studied the representation of urban traffic flow data
as flow probability distributions (FPDs) and proposed an
adaptation of LOF for outlier detection in a database of
FPDs, using the Bhattacharyya distance. Several experiments
show the benefits of this novel treatment of traffic flow data

compared to standard approaches. In an additional case study,
looking into possible explanations of top outliers found on ten
locations, we related these outliers to unusual weather and to
city events.
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